Conformation of methyl O-methyl-D-xylofuranosides: a p.m.r. study

J. Alföldi, C. Peciar, R. Palovčík, and P. Kováč Institute of Chemistry, Slovak Academy of Sciences, Bratislava 9 (Czechoslovakia) (Received December 13th, 1971; accepted for publication in revised form, March 13th, 1972)

In contrast to six-membered ring systems, not much information has accumulated in the literature concerning the conformational analysis of five-membered ring systems. The difficulties encountered in such analysis are due to the very small energy differences between the various, possible conformations¹.

Abraham and McLauchlan³ have calculated dihedral angles as a function of the puckering of the five-membered ring, and Hall⁴ has investigated the conformation of some α -D-ribofuranose derivatives by p.m.r. spectroscopy. The conformations of a number of other pentofuranose derivatives, e.g. those of p-arabinose, p-xylose, p-ribose, and p-xylose, have also been investigated⁵. Coxon⁶ studied the conformation of 1,2-O-benzylidene- and 1,2:3,5-di-O-benzylidene- α -D-glucofuranose and concluded that the furanoid ring in these compounds exists predominantly in a twist (T) conformation.

For most substituted furanoid sugars, as a result of steric and non-bonded interactions, some of the conformations of a certain segment of the pseudorotation cycle² are more heavily populated. We now report on the conformations of methyl O-methyl-D-xylofuranosides.

The chemical shifts (τ) of H-1-H-4, obtained from the first-order parts of the spectra, for seven anomeric pairs of methyl *O*-methyl-D-xylofuranosides are presented in Table I.

The anomeric proton for each methyl O-methyl-D-xylofuranoside appears as a well-resolved doublet. In cases where a methoxyl group is present at C-2, H-1 is

TABLE I
CHEMICAL SHIFTS (7) OF THE XYLOFURANOSIDES 1-14

	• • •				
Compound	H-1	H-2	H-3	H-4	
1	4,91	5.97	5.20	5.58	
2	4.92	5.46	5.79	5.35	
3	4.80	5.22	5.29	5.44	
4	4.89	5.99	5.77	5.44	
5	4.83	5.96	5.25	5.52	
6	4.97	5.58	5.93	5.42	
7	4.94	6.10	5.89	5.47	
Compound	H-I	Н-2	H-3	H-4	
8	4.91	5.91	5.40		
9	4.81	5.40	5.91	5.21	
10	4.76	5.36	5.36	5.18	
11	4.94	6.06	6.00	5.37	
12	4.91	5.98	5.43		
		~ 44	5.07	5.22	
13	4.78	5.41	5.97	J.22	

more shielded in the β -anomer. Where there is a free hydroxyl group at C-2, H-1 is more shielded in the α -anomer. The diamagnetic, upfield (τ) shift can be seen for compounds where there is a proton attached to a carbon atom carrying a methoxyl group.

TABLE II
THE FIRST-ORDER COUPLING CONSTANTS (Hz) OF METHYL O-METHYL-D-XYLOFURANOSIDES

J _{1.2}	J _{2.3}	J _{3.4}	
4.3	6.2	7.0	
4.4	5.5	6.8	
4.3	4.6	6.2	
4.1	5.7	6.5	
4.4	5.5	6.5	
4.5	4.7	6.2	
4.2	5.4	6.7	
J _{1,2}	J _{2,3}	J _{3,4}	
1.8	1.9		
1.5	2.6	6.0	
0.8	2.0	5.0	
0.8 1.5	2.0 2.3	5.0	
		5.0	
1.5	2.3	5.6 5.6	
	4.3 4.4 4.3 4.1 4.4 4.5 4.2 J _{1,2}	4.3 6.2 4.4 5.5 4.3 4.6 4.1 5.7 4.4 5.5 4.5 4.7 4.2 5.4 J _{1,2} J _{2,3} 1.8 1.9 1.5 2.6	4.3 6.2 7.0 4.4 5.5 6.8 4.3 4.6 6.2 4.1 5.7 6.5 4.4 5.5 6.5 4.5 4.7 6.2 4.2 5.4 6.7 J _{1,2} J _{2,3} J _{3,4} 1.8 1.9 1.5 2.6 6.0

Carbohyd. Res., 25 (1972) 249-252

NOTE 251

The determination of the conformation of the fourteen methyl O-methyl-D-xylofuranosides is based on the coupling constants (Table II) and the dihedral angles derived therefrom⁷.

A five-membered ring can exist in both symmetrical [envelope (E) and twist $(T)^8$] and non-symmetrical conformations. Only the symmetrical conformations are considered here; the nonsymmetrical forms are, in view of the limited accuracy of the n.m.r. method, not considered². Of the twenty theoretically possible, symmetrical conformations, that which predominates is determined by the nature of the substituents and the non-bonded interactions. Thus, the p.m.r. parameters can be interpreted only in terms of a group of most-populated conformations that are closely related energetically.

TABLE III

DIHEDRAL ANGLES (FROM DREIDING MODELS) FOR METHYL O-METHYL- α -D-XYLOFURANOSIDES

Conformation	$\phi_{1,2}$	φ _{2,3}	$\phi_{3,4}$	 ·
² T ₁	35°	155°	25°	
$^{2}T_{1}$ ^{2}V	25°	155°	20°	
$^{2}T_{3}$	35°	155°	30°	

Table III shows the dihedral angles for methyl O-methyl- α -D-xylofuranosides estimated from Dreiding models. Only the values closest to those estimated from coupling constants are presented. The irrelevant values for the remaining seventeen less-populated conformers are not included. Based on the observed coupling-constants, the following dihedral angles were derived for methyl O-methyl- α -D-xylofuranosides 1-7: $\phi_{1,2} = 35-55^{\circ}$; $\phi_{2,3} = 130-150^{\circ}$; $\phi_{3,4} = 20-40^{\circ}$. Comparing these values with the ones obtained from the models, the following most-probable conformations for methyl O-methyl- α -D-xylofuranosides are proposed: 2T_1 , 2V , 2T_3 (Fig. 1). In view of the rapid interconversion of the individual conformers, the n.m.r. method does not allow identification of any particular predominating conformer.

The dihedral angles for the β -anomers were estimated in a similar manner and compared with the values obtained from the models. The estimated angles $\phi_{1,2}$ =

Fig. 1

252 NOTE

100-120°; $\phi_{2,3} = 110-130^\circ$; and $\phi_{3,4} = 30-50^\circ$ are consistent with the following conformations: 3T_2 , 3V , 3T_4 (Fig. 2).

Fig. 2

The fact that there are different conformations for compounds in the α and β series shows the importance of the non-bonded interactions between O-1 and O-2, because the inversion of the configuration at the anomeric centre causes the variation in the population of the conformers. In order to clarify the influence of non-bonded interactions upon conformation, further study of model compounds is necessary.

EXPERIMENTAL

N.m.r. spectra were obtained for 10% solutions in pyridine at 25°, with an 80-MHz Tesla BS-487 B spectrometer. Better resolution was obtained in pyridine than in D_2O or $CDCl_3$. The proton-signal assignment was made by the INDOR technique. The methyl O-methyl-D-xylofuranosides (1-14) were synthesized according to published procedures $^{9-11}$.

REFERENCES

- 1 J. E. KILPATRICK, K. S. PITZER, AND R. SPITZER, J. Amer. Chem. Soc., 69 (1947) 2483.
- 2 L. D. HALL, P. R. STEINER, AND C. PEDERSEN, Can. J. Chem., 48 (1970) 1155.
- 3 R. J. ABRAHAM AND K. A. McLAUCHLAN, Mol. Phys., 5 (1962) 513.
- 4 L. D. HALL, Chem. Ind. (London), (1963) 950.
- 5 J. D. Stevens and H. G. Fletcher, Jr., J. Org. Chem., 33 (1968) 1799.
- 6 B. Coxon, Carbohyd. Res., 8 (1968) 125.
- 7 R. J. Abraham, L. D. Hall, L. Hough, and K. A. McLauchlan, J. Chem. Soc., (1962) 3699.
- 8 C. T. BISHOP AND F. P. COOPER, Can. J. Chem., 41 (1963) 2743.
- 9 P. Kováč and M. Petríková, Carbohyd. Res., 16 (1971) 492.
- 10 P. Kováč and M. Petríková, Carbohyd. Res., 19 (1971) 249.
- 11 P. Kováč, Chem. Zvesti, 25 (1971) 460.

Carbohyd. Res., 25 (1972) 249-252